首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   212篇
  免费   12篇
  国内免费   4篇
测绘学   10篇
大气科学   17篇
地球物理   66篇
地质学   105篇
海洋学   12篇
天文学   4篇
综合类   6篇
自然地理   8篇
  2023年   1篇
  2022年   7篇
  2021年   6篇
  2020年   8篇
  2019年   12篇
  2018年   18篇
  2017年   25篇
  2016年   19篇
  2015年   15篇
  2014年   18篇
  2013年   30篇
  2012年   12篇
  2011年   17篇
  2010年   7篇
  2009年   4篇
  2008年   5篇
  2007年   5篇
  2006年   3篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2001年   3篇
  1998年   2篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1986年   1篇
  1980年   1篇
排序方式: 共有228条查询结果,搜索用时 15 毫秒
41.
Soil particle size distribution (PSD) is used to estimate some soil processes, soil moisture characteristics, and infiltration rate (IR). Prediction of infiltration rate from soil texture data requires an accurate characterization of PSD. The objective of this study was to determine more important primary particle diameters that control IR. The experiments were conducted using double-ring method with constant head of 5 cm in 15 different soils and three replications. The range of measured IR for studied soils varied from 1.6 to 30.66 cm h?1. The results indicated that the primary PSD had a significant influence on IR. In other words, most D n fractions had significant positive effect on the final IR. Among different fractions, D 30, D 40, and D 60 showed higher relationships with IR than the others. These diameters are attributed to particles with diameter of 0.05, 0.08, and 0.16 mm, respectively. The results also showed that increasing the percent of sand have intensified influence on increasing the final IR. Reversely, clay and silt contents showed negative effects on final IR. Furthermore, the CaCO3 had a meaningful effect on the IR that showed the importance of lime in arid and semiarid regions. Finally, it is revealed that the role of texture was important, especially in behavior of infiltration, runoff, and production capability.  相似文献   
42.
Evaluating the hazard potential of the Makran subduction zone requires understanding the previous records of the large earthquakes and tsunamis. We address this problem by searching for earthquake and tectonic proxies along the Makran Coast and linking those observations with the available constraints on historical seismicity and the tell-tale characteristics of sea floor morphology. The earthquake of Mw 8.1 of 1945 and the consequent tsunami that originated on the eastern part of the Makran are the only historically known hazardous events in this region. The seismic status of the western part of the subduction zone outside the rupture area of the 1945 earthquake remains an enigma. The near-shore shallow stratigraphy of the central part of Makran near Chabahar shows evidence of seismically induced liquefaction that we attribute to the distant effects of the 1945 earthquake. The coastal sites further westward around Jask are remarkable for the absence of liquefaction features, at least at the shallow level. Although a negative evidence, this possibly implies that the western part of Makran Coast region may not have been impacted by near-field large earthquakes in the recent past??a fact also supported by the analysis of historical data. On the other hand, the elevated marine terraces on the western Makran and their uplift rates are indicative of comparable degree of long-term tectonic activity, at least around Chabahar. The offshore data suggest occurrences of recently active submarine slumps on the eastern part of the Makran, reflective of shaking events, owing to the great 1945 earthquake. The ocean floor morphologic features on the western segment, on the contrary, are much subdued and the prograding delta lobes on the shelf edge also remain intact. The coast on the western Makran, in general, shows indications of progradation and uplift. The various lines of evidence thus suggest that although the western segment is potentially seismogenic, large earthquakes have not occurred there in the recent past, at least during the last 600?years. The recurrence period of earthquakes may range up to 1,000?years or more, an assessment based on the age of the youngest dated coastal ridge. The long elapsed time points to the fact that the western segment may have accumulated sufficient slip to produce a major earthquake.  相似文献   
43.
Soil salinity and sodicity are escalating problems worldwide, especially in arid and semiarid regions. A laboratory experiment was conducted using soil column to investigate leaching of soluble cations during reclamation process of a calcareous saline–sodic soil (CaCO3?=?20.7%, electrical conductivity (EC)?=?19.8 dS m?1, sodium absorption ratio (SAR)?=?32.2[meq L?1]0.5). The amendments consisted of control, cattle manure (50 g kg?1), pistachio residue (50 g kg?1), gypsum (5.2 g kg?1; equivalent of gypsum requirement), manure + gypsum and pistachio residue + gypsum, in three replicates which were mixed thoroughly with the soil, while sulfuric acid as an amendment was added to irrigation water. To reflect natural conditions, after incubation period, an intermittent irrigation method was employed every 30 days. The results showed that EC, SAR, and soluble cations of leachate for the first irrigation step were significantly higher than those of the subsequent leaching runs. Moreover, the concentration of removed soluble cations was lower for the control and gypsum-treated soils. It was found that among applied amendments, treatments containing cattle manure showed higher concentrations of sodium, calcium, and magnesium in the leachate, while due to pistachio residue application, further amount of potassium was removed out of soil column. The addition of pistachio residue resulted in the highest reduction in soil salinity and sodicity since the final EC and exchangeable sodium percentage dropped to 18.0% and 11.6% of their respective initial values, respectively. In the calcareous soil, solubility of gypsum found to be limited, in contrast, when it was added in conjunction with organic amendments, greater amounts of sodium were leached.  相似文献   
44.
Ground roll attenuation using the S and x-f-k transforms   总被引:2,自引:0,他引:2  
Ground roll, which is characterized by low frequency and high amplitude, is an old seismic data processing problem in land‐based seismic acquisition. Common techniques for ground roll attenuation are frequency filtering, f‐k or velocity filtering and a type of f‐k filtering based on the time‐offset windowed Fourier transform. These techniques assume that the seismic signal is stationary. In this study we utilized the S, x‐f‐k and t‐f‐k transforms as alternative methods to the Fourier transform. The S transform is a type of time‐frequency transform that provides frequency‐dependent resolution while maintaining a direct relationship with the Fourier spectrum. Application of a filter based on the S transform to land seismic shot records attenuates ground roll in a time‐frequency domain. The t‐f‐k and x‐f‐k transforms are approaches to localize the apparent velocity panel of a seismic record in time and offset domains, respectively. These transforms provide a convenient way to define offset or time‐varying reject zones on the separate f‐k panel at different offsets or times.  相似文献   
45.
Mass and heat transfer occurring across phase-interfaces in multi-phase flow in porous media are mostly approximated using equilibrium relationships or empirical kinetic models. However, when the characteristic time of flow is smaller than that of mass or heat transfer, non-equilibrium situations may arise. Commonly, empirical approaches are used in such cases. There are only few works in the literature that use physically-based models for these transfer terms. In fact, one would expect physical approaches to modeling kinetic interphase mass and heat transfer to contain the interfacial area between the phases as a variable. Recently, a two-phase flow and solute transport model was developed that included interfacial area as a state variable [36]. In that model, interphase mass transfer was modeled as a kinetic process.  相似文献   
46.
The conservative nature of chloride (Cl?) in groundwater and the abundance of geochemical data from various sources (both published and unpublished) provided a means of developing, for the first time, a representation of the hydrogeology of the Illinois Basin on a basin‐wide scale. The creation of Cl? isocons superimposed on plan view maps of selected formations and on cross sections across the Illinois Basin yielded a conceptual model on a basin‐wide scale of recharge into, groundwater flow within and through the Illinois Basin. The maps and cross sections reveal the infiltration and movement of freshwater into the basin and dilution of brines within various geologic strata occurring at basin margins and along geologic structures. Cross‐formational movement of brines is also seen in the northern part of the basin. The maps and cross sections also show barriers to groundwater movement created by aquitards resulting in areas of apparent isolation/stagnation of concentrated brines within the basin. The distribution of Cl? within the Illinois Basin suggests that the current chemical composition of groundwater and distribution of brines within the basin is dependent on five parameters: (1) presence of bedrock exposures along basin margins; (2) permeability of geologic strata and their distribution relative to one another; (3) presence or absence of major geologic structures; (4) intersection of major waterways with geologic structures, basin margins, and permeable bedrock exposures; and (5) isolation of brines within the basin due to aquitards, inhomogeneous permeability, and, in the case of the deepest part of the basin, brine density effects.  相似文献   
47.
Understanding the hydrologic connectivity between kettle holes and shallow groundwater, particularly in reaction to the highly variable local meteorological conditions, is of paramount importance for tracing water in a hydro(geo)logically complex landscape and thus for integrated water resource management. This article is aimed at identifying the dominant hydrological processes affecting the kettle holes' water balance and their interactions with the shallow groundwater domain in the Uckermark region, located in the north-east of Germany. For this reason, based on the stable isotopes of oxygen (δ18O ) and hydrogen (δ2H ), an isotopic mass balance model was employed to compute the evaporative loss of water from the kettle holes from February to August 2017. Results demonstrated that shallow groundwater inflow may play the pivotal role in the processes taking part in the hydrology of the kettle holes in the Uckermark region. Based on the calculated evaporation/inflow (E/I) ratios, most of the kettle holes (86.7%) were ascertained to have a partially open, flow-through-dominated system. Moreover, we identified an inverse correlation between E/I ratios and the altitudes of the kettle holes. The same holds for electrical conductivity (EC) and the altitudes of the kettle holes. In accordance with the findings obtained from this study, a conceptual model explaining the interaction between the shallow groundwater and the kettle holes of Uckermark was developed. The model exhibited that across the highest altitudes, the recharge kettle holes are dominant, where a lower ratio of E/I and a lower EC was detected. By contrast, the lowest topographical depressions represent the discharge kettle holes, where a higher ratio of E/I and EC could be identified. The kettle holes existing in between were categorized as flow-through kettle holes through which the recharge takes place from one side and discharge from the other side.  相似文献   
48.
Matching pursuit belongs to the category of spectral decomposition approaches that use a pre-defined discrete wavelet dictionary in order to decompose a signal adaptively. Although disengaged from windowing issues, matching point demands high computational costs as extraction of all local structure of signal requires a large size dictionary. Thus in order to find the best match wavelet, it is required to search the whole space. To reduce the computational cost of greedy matching pursuit, two artificial intelligence methods, (1) quantum inspired evolutionary algorithm and (2) particle swarm optimization, are introduced for two successive steps: (a) initial estimation and (b) optimization of wavelet parameters. We call this algorithm quantum swarm evolutionary matching pursuit. Quantum swarm evolutionary matching pursuit starts with a small colony of population at which each individual, is potentially a transformed form of a time-frequency atom. To attain maximum pursuit of the potential candidate wavelets with the residual, the colony members are adjusted in an evolutionary way. In addition, the quantum computing concepts such as quantum bit, quantum gate, and superposition of states are introduced into the method. The algorithm parameters such as social and cognitive learning factors, population size and global migration period are optimized using seismic signals. In applying matching pursuit to geophysical data, typically complex trace attributes are used for initial estimation of wavelet parameters, however, in this study it was shown that using complex trace attributes are sensitive to noisy data and would have lower rate of convergence. The algorithm performance over noisy signals, using non-orthogonal dictionaries are investigated and compared with other methods such as orthogonal matching pursuit. The results illustrate that quantum swarm evolutionary matching pursuit has the least sensitivity to noise and higher rate of convergence. Finally, the algorithm is applied to both modelled seismograms and real data for detection of low frequency anomalies to validate the findings.  相似文献   
49.
The complex stream bank profiles in alluvial channels and rivers that are formed after reaching equilibrium has been a popular topic of research for many geomorphologists and river engineers. The entropy theory has recently been successfully applied to this problem. However, the existing methods restrict the further application of the entropy parameter to determine the cross-section slope of the river banks. To solve this limitation, we introduce a novel approach in the extraction of the equation based on the calculation of the entropy parameter (λ) and the transverse slope of the bank profile at threshold channel conditions. The effects of different hydraulic and geometric parameters are evaluated on a variation of the entropy parameter. Sensitivity analysis on the parameters affecting the entropy parameter shows that the most effective parameter on the λ-slope multiplier is the maximum slope of the bank profile and the dimensionless lateral distance of the river banks.  相似文献   
50.
Studia Geophysica et Geodaetica - We examine the potential of magnetic susceptibility measurements to discriminate different soil drainage classes in the Gandoman region, central Iran. Four soil...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号